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A finite-volume numerical algorithm using nonuniformly distributed skewed, quadrilateral 
cells is developed to solve the Euler equations in conservation form. Fluxes across the cell 
boundaries are computed using the total variation diminishing (TVD) methodology 
developed by Harten. Proof of the TVD property for nonuniform grid systems and a trunca- 
tion error analysis are presented along with a discussion of the treatment of boundary condi- 
tions. Four test cases are given to examine the efficacy of the present scheme using a system 
of skewed and nonuniform cells. The excellent agreement of the numerical results with exact 
solutions and carefully designed experiments demonstrates the ability of the present scheme to 
accurately resolve complicated wave developments and interactions using highly nonuniform 
multiblock zonal cell distributions. 0 1989 Academic Press, Inc. 

I. IN~~D~JC~~N 

Analysis of high speed flow problems invariably involves the resolution of shock 
waves internal to the computational domain. For complicated geometries, there 
may be multiple interactions of weak and strong shock waves, expansion waves, 
and contact discontinuities which make an accurate evaluation of the local flow 
properties very difficult. 

The development of TVD [l-3] numerical schemes has been a significant mile- 
stone for attaining accurate local resolution of these discontinuities and their inter- 
actions in a few grid locations without spurious oscillations. These schemes have 
now been widely applied for numerical calculation of inviscid flow problems (e.g., 
Refs. 46) using finite difference techniques. 

The purpose of this paper is to extend these TVD ideas [3] to finite volume 
techniques, since these latter numerical schemes allow for a direct treatment of com- 
plicated multidimensional geometries associated with practical systems. They also 
allow for the use of nonuniform global or localized multiblock grid specifications 
which may be very necessary to efficiently resolve the flow patterns for complicated 
practical configurations. 

Specifically, the TVD methodology developed by Harten [3] for uniform mesh 
finite difference schemes will be modified and applied to the evaluation of the flux 
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between skewed finite-volumes (cells) arbitrarily distributed in the computational 
domain. This type of cell distribution and the communication between multiple 
adjoining cells can be viewed in the context of local zonal multiblock gridding. 
These localized nonuniform cell specifications do not influence cell distributions in 
other areas of the computational domain as can be the case for curvilinear coor- 
dinates or some transformation techniques which require cell nodal connectivity. 
The goal is to be able to solve for the inviscid flow over complex configurations by 
this second order, finite volume TVD scheme. 

In Section II, the basic discrete difference equations are developed for the fmite- 
volume scheme using skewed cells. The reader is referred to Harten’s [3] original 
paper for theoretical details of his basic scheme; however, the theory necessary for 
the extension of the technique to this finite volume application is contained herein. 
Also included is proof of the retention of the TVD properties in nonuniform grid 
systems and a truncation error analysis (Appendices A and B). Four numerical 
experiments are presented in Section III. Their purpose is to demonstrate the 
efficacy of the scheme using skewed and/or nonuniform cells in the computational 
domain. These problems demonstrate the ability of the finite volume technique to 
resolve complicated wave development and interactions in one and two dimensions 
as well as in very complicated axisymmetric flow problems. 

II. DISCRETE FINITE-VOLUME SCHEME 

A. Differential Equations 

Consider the Euler equations in “conservation” form for 2-dimensional and 
axisymmetric flow problems 

c?U 8F aG 
-+-+-=s, 
at ax ay 

where 

and LX= 0, 1 for 2-dimensional and axisymmetric problems, respectively; p is the 
density; p is the pressure; u and u are the velocity components in the x- and y-direc- 
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tions, respectively; and e is the total energy per unit mass. For a polytropic gas, e 
is related to p by the equation of state 

p = (y - 1) P[e - (u2 + u2)/2] 

B. Difference Equations 

For a finite volume scheme, the difference equations are generated by integrating 
Eqs. (1) over a cell volume V whose boundaries can be time dependent. However, 
only stationary boundaries are considered here, and the reader is referred to 
Ref. [7] for the treatment of the more general case including moving boundaries 
within the computational domain. 

Therefore, the integrated form of Eqs. (1) is 

at a j-j, U dx dy + Jj-v [g + $1 dx dy = j-1, S dx dy, (2) 

where the double integration represents a volume integral, since the integration in 
the third dimension has already been performed. When Gauss’ theorem is applied, 
the second term in Eq. (2) can be converted to a surface integral representing the 
fluxes across a cell boundary 

(3) 
V 

where V -Fi + Gj, A is the complete boundary of V, and IV is the unit outward 
normal of dA. 

Using an explicit tirst-order-accurate time differencing scheme, for a quadrilateral 
cell of skewed shape as shown in Fig. la, we can write the difference equations for 
Eqs. (1) as 

mass: PY.fl=P:i-dY,,j,=l A- i {(Pwwkx 

x-momentum: (PI;;’ = (Pu):j-k kil { (pu2 + P); A/cN/cx 

+ (w); M%,J 

y-momentum: 

Energy: (p~);;‘=(pe):~-g,~$~ {C(P/P+e)PuXA~N~~ 

(44 

(4b) 

(4c) 

+ [(p/q + e) ~1; AkNky), (Ad) 
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FIG. 1. Finite volume cell geometries. 

where the superscript n represents the time step; subscripts i and j identify the cell; 
A Vi, j is the volume of cell i, j; and the subscript k outside a parenthesis or a bracket 
indicates that the enclosed dependent variables (physical fluxes) are to be evaluated 
on the surface k. Assumptions implicit in the derivation of these equations are that 
the volume integration is well approximated using the cell center value and the flux 
properties are assumed constant over a given surface. 

Use of rectangular cells aligned with the coordinate directions as shown in 
Fig. lb simplifies the evaluation of the flux terms and the cell description. However, 
there is a significant loss of flexibility. A prominent focus of the present work, 
therefore, is to retain the geometric flexibility shown in Fig. la in order to handle 
complex configurations not readily amenable to transformation techniques. This 
arbitrary distribution of cells can be interpreted as a general zonal grid specifica- 
tion. 

The solution of the above system of difference Eqs. (4) yields the flow variables 
p, u, v, and e at the center of a cell and at time t”+ ‘, once the fluxes across the cell 
boundaries are evaluated. A number of schemes can be used to accomplish this. 

The Godunov [8] method, and variants thereof Cl, 91 has been used in the past 
(among others) to evaluate these flux terms, since its physical analogy allows it to 
readily handle flows with shocks and contact discontinuities. However, due to the 
diffusive nature of the original Godunov method, discontinuities are usually 
smeared, sometimes excessively. This situation becomes worse when the flow 
involves interactions of various strong waves and contact discontinuities. 
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In this paper, the TVD methodology developed by Harten [3] for finite dif- 
ference schemes is modified and applied to numerically evaluate the flux terms. For 
the sake of clarity, the application of the algorithm will be explained for a non- 
uniform distribution of rectangular cells aligned with the coordinate directions. 
Both the axisymmetric case and skewed cells will be discussed later in this section. 

Following Harten, the numerical approximation for Eqs. (1) is 

U;T1 = U;j- [ni(Fy+ 1/2,jmFr- l/*,j) 

+31j(G;j+,,,-c~j-,,*)l, (5) 

where li = At/Ax,; Aj = AtlAy,; and the numerical flux terms F;+ ,,2, j and F;- 1,2, j 
are written in the form 

Fi- l/2, j  = - i F(ui,j) + flu,- l,j) 

(6b) 

These equations reduce to Harten’s uniform grid spacing form as Axi + Axi- 1. 
In Appendix A, it is proven that the TVD property is preserved for a nonuniform 
cell specification. It is shown in Appendix B that the scheme retains its second-order 
accuracy, if the variation of the cell distribution is smoother than an algebraic dis- 
tribution of power greater than 1. (For the definition of an algebraic distribution, 
see Ref. [lo].) 

The last term in Eqs. (6) represents the combination of the numerical viscosity 
and artificial compression. The method adopted to construct this latter term is 
essentially the one referred to as UTLlC in Ref. [3]. 

Equation (6) represents the numerical evaluation of the fluxes in the x-direction; 
consequently, j is kept constant. In the following, we shall omit the j index. In 
Eq. (6), the vector /Ii+ 1,2 is given by 

a;+ 1/2 = Q"(v;+ 1/2 + r:, 1,2) a:+ 1,2 - (8; + g;+ ,I, (7a) 
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where 

and 

vf+ l/2 = Ad+ 112 (7b) 

1 I 1 1 
ai+ l/2 = ui+ l/2 - ci+ l/23 

2 
ai+ I/2 = ui+ l/2 

3  ̂
= ui + l/2 + Ei + 1/z 7 4, 112 = iri + 112 

(7c) 
ai+ l/2 

$i + l/2 = w2uxP1’2) 

= ((Y - 1)CAi+l/2-l(li?+l/2 + B2+ 1/2)111’2. ci+ l/2 
Ud) 

Here, (b) denotes an arithmetic average 

(b)=$(bi+bi+l), (W 

H is the enthalpy given by 

H= yp/(y- 1) p + $(u’+ Y’), 03) 

and y is the ratio of specific heats which should not be confused with yr+ 1,2. In 
Eq. (7b), a;+ 1,2, k = 1, . . . . 4, are eigenvalues of the Jacobian A = aF/dlJ expressed in 
terms of Roe’s [9] averaged quantities. The Rf, I,2 is the kth column of the right 
eigenvector where 

1 

[ “I- 

1 1 0 

4+1/2-c,+1/2 0 
R 

u, + l/2 u, + I,2 + Cl + l/2 
I + l/2 = 

0, i- i/2 v,+,,z v,+ I,2 1 ’ (9) 

fi,+1/2rfi - 1+1/2c,+1/2 @f+,,~+i?+,,S H,+1,2+k+~,2~,+1,2 6,~ I 

where fii+ l,2 = W2WW2~. 
The functional form of the numerical viscosity term, Q, is given by 

$(X2/& + E) Q(x) = {,x, for 1x1 GE 
for 1x1 >E, 

(10) 
where E is a constant between 0.20 and 0.5. The components of the vector ai+ 1,2 are 
defined as 

“il+1/2= ICC1 - c2)7 crf+,j2= CPli+l/Z- cl 

3 
cli+ l/2 = 3(cl + c2) (11) 

4+1,/2= CP”li+1/2-fii+1/2CPli+1/2~ 

where [b],, 1,2 = b,, 1 - bi and 

cl=(Y-ll){ CPelL+l/2+ ~(ti~+l/2+~f+I/2)CPli+1/2 

~~i+1/2CP”li+l/2~~i+l~2CPvli+*~2)/~2+1/2 

c2~{CPuli+~/2~tii+1/*CPli+~/2)l~i+*~2~ 
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The vector, gi, which includes the artificial compression factor, 8, is given by 

gf=g;+eig; 

2: = s:, l/2 maxI min(li?F+ 1,2ly K 1,2Sf+ ,,dl, 
(12) 

where 

and 

-k gi+ l/2= IlIQ"(vF+ l/2)- (vf+ 1/2121 aI+ l/2 

S:+ 1/2 = sgn(8+ 1,2) (W 
k 

Yi+1/2=(g:+l-g~)lcl~+k+1/2, when a:+ 1,2 # 0 

=o when a;+ 1,2 = 0 (13b) 

8: = S max[O, mm(Scr- l,2ai- 112, gi+ 1/2 bi+ A )I (13c) 

where S = sgn(a,+ 1,2), 

and 

ci+ l/2 = fill - Q(vi+ l/2)1 (13d) 

ei= lai+,,2- ai- yzl/(lai+ 1121 -t Iai- 1,211. We) 

Correspondingly, the y-direction fluxes GTj+ ,,2 and qj- 1,2 are given by 

Gi, j+ l/2 = i G(u,j)+G(Ui,j+l) 

- CG(ui,j+,,-G(U,j)I ~~+‘~~~~ 
J+l J 

Gi,j-l/2=$ G(Ui,j)+G(u,j-1) 
i 

- CG(~t,~)-G(~i,~-~)l ~~J~~~l 
J J 1 

(14a) 

(14b) 

In computing the y-direction flux, i is constant. Therefore, /3;+ 1,2 and RT+ 1,2 are 
given by Eqs. (7) through (13) with i changed to j and u interchanged with u. 
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C. Axisymmetric Case 

In Eqs. (4), the flux terms for axisymmetric problems are identical to those for 
planar problems, since the evaluation of the cell volume, flux area, and source term 
in the y-momentum equation take care of the geometric differences. 

The algorithm presented in Eq. (5) is applied for both planar and axisymmetric 
flows using the proper construction of the flux area by appropriately considering 
the metric y” in the equations of motion. 

D. Skewed Cells 

On any surface of a skewed cell, each of the four components of the flux vector 
[see Eq. (3)] is represented by two components, the x-component aligned with the 
x-coordinate direction and the y-component aligned with the y-coordinate direc- 
tion. Once the four cells required for the flux calculations in each direction are 
determined (two upstream and two downstream of the cell surface being con- 
sidered), the x-component flux is evaluated using Eq. (6) with the respective cell 
center values and locations and, similarly, the y-component is evaluated using 
Eq. (14). To determine these four cells, one must first locate the cells immediately 
upstream and downstream of this surface. The cell further upstream is determined 
by locating the cell connected to the surface opposite (upstream) to the surface 
under consideration. If there is more than one cell adjoining the upstream surface, 
the cell whose center is closer to the downstream cell center is selected. The further 
downstream cell is determined in a similar manner. The distances required to con- 
struct the flux corrector/limiters in Eqs. (6) and (14) are given by the projections of 
the cell and surface centers on the x-axis and y-axis, respectively. The scalar 
product of this flux vector and the surface normal yields the fluxes across A,N,, 
and A, NkY. This procedure is very easy to implement and includes the case of using 
rectangular cells, either aligned or staggered, as in the test cases B and D of this 
paper as a degenerate case. However, if NkY Q NkX, we may neglect the numerical 
viscosity and artificial compression in the y-direction flux calculation. This 
simplification is applied for the test case C calculation described in Section III. 

III. NUMERICAL EXPERIMENTS 

In order to verify the efficacy of the algorithm developed in the previous sections, 
the results of four numerical experiments are presented and compared to either 
exact solutions or detailed experimental measurements. These include two l-dimen- 
sional, one 2-dimensional, and an axisymmetric flow. 

A. Riemann Problem (Case A) 

The Riemann problem for a polytropic gas (y = 1.4), presented in Ref. [3], is 
reconsidered using both uniform and nonuniform grid systems as shown in the 
insert of Fig. 2. 
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FIG. 2. Comparison of the calculated pressure variation for uniform and nonuniform cell distribu- 
tions (Case A). 

The initial conditions are given as 

p = 3.52773, p = 0.445, 

p = 0.571, p = 0.5, 

u = 0.69888, x < 0, (15) 

u = 0, x > 0. (16) 

Comparisons of the respective pressure results obtained at corresponding flow 
times using uniform and nonuniform grids are shown in Figs. 2a-c. The exact solu- 
tion is also shown for comparison purposes. Here, the cell size for the uniform grid 
was kept at Ax = 0.1. For the nonuniform grid, the cell size for cells 1, 3, 5, . . . is set 
to Ax, and for cells 2, 4, 6, . . . is set to Ax,, where Ax, + Ax, = 2Ax. In this arrange- 
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FIG. 2-Continued 

ment, cell centers for both the uniform and nonuniform grid systems are coincident. 
For all calculations, the Courant number was kept constant at 0.9; E (see Eq. (10)) 
was fixed at a value of 0.25. 

Similar results were obtained for the density and velocity variations and 
demonstrate that the solutions derived from the present algorithm are insensitive to 
the nonuniformity of cell distribution up to at least a variation of Ax,/Ax, = 1.67. 

B. Unsteady Flow in a Closed Shock Tube (Case B) 

Consider the initial/boundary value problem of a closed shock tube as depicted 
in Fig. 3a. Here, a diaphragm, located at x = 0, separates two gases at different 
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FIG. 2-continued 

conditions and is burst at t = 0. The right and left end walls are located at + 4.1, 
respectively; the calculation is carried on long enough for the waves to reflect off 
the walls (II. fi= 0) and interact with the right running contact surface. 

The exact solution to this problem is shown in Fig. 3b. Here, the rarefaction 
waves are schematically represented by broken lines. The interaction of the reflected 
shock and the contact surface takes place at (x, t) = (3.2379,2.5296). At this time, 
the leading front of the reflected rarefaction wave front (RRWF) is located to the 
left of x = 1.8897. By approximating the continuous rarefaction fan with five charac- 
teristic lines, it can be shown that any interaction between the RRWF and the 
transmitted shock is very weak. 

The present numerical simulation treats the problem in a 2-dimensional manner 

581/84/l-11 
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FIG. 3. Unsteady flow in a closed shock tube (Case B): (a) geometry and initial conditions; (b) exact 
solution; (c) computational cell distribution. 

using the cell distribution shown in Fig. 3c. Notice that the cell distribution is 
changed at x = 1. The purpose of treating the problem in a 2-dimensional manner 
using this unnecessarily complicated cell distribution is to test the adaptability of 
the present algorithm to correctly handle cell interfaces which have interactions 
with more than one adjoining cell (e.g., at x = 1); see Section 1I.D. 

The boundary condition on the solid end walls of the shock tube is 

w,,=u,.fi=o (17) 

where ub is the fluid velocity vector on the wall and fl is the vector normal to the 
wall. Therefore, only the pressure on the wall contributes to the evaluation of the 
flux on this solid cell surface. This pressure is computed, in the manner suggested 
by Reddall [ll], by treating the wall interaction as l-dimensional wave reflections. 
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At t = t”, the dependent variables pn, pn, and w, are known, where w, = u . Iii at 
the center of a cell adjacent to a solid boundary. For w, > 0, the condition w,, = 0 
can be viewed as the result of a symmetric reflection of two shocks of equal 
strength; thus, the following equation can be derived [12] for the pressure, p,,,, on 
the wall 

&=l+ Y(Y + 1) wz 
P” 

----[l+&$$$], 
4 cf 

(18) 

where ci = yp,/p,. For w, < 0, the boundary condition w,,=O is viewed as the 
result of an expansion wave propagating into the fluid from the solid surface. Using 
the Riemann invariant and isentropic relation, we can derive the equation 

(19) 

for w, = 0, 

Pm, = PII. (20) 

In constructing the numerical viscosity and artificial compression contributions 
to the fluxes across the surface next to the solid wall, we need a cell outside the 
solid boundary. Here, the reflection principle is used to assign the cell center values 
for this fictitious cell. 

Numerical results are shown in Figs. 4 through 6, where the CFL condition was 
fixed at 0.9 and E = 0.25. Shown in Figs. 4ac are the results for pressure, density, 
and velocity, respectively, before the shock reaches the right closed end. Notice that 
the shock is resolved in one or two cells. Figures 5a-c depict the results after the 
shock is reflected from the wall, and Figs. 6a-c depict the results following inter- 
action of the reflected shock with the contact surface. It is especially important to 
note that the scheme correctly selected and captured the transmitted shock and 
reflected rarefaction wave. However, the first-order Godunov [13] technique 
cannot resolve these discontinuities. Also, note that at t = 2.75, the numerically 
captured transmitted shock location is at 2.5 ( f Ax = 0.1) compared with the exact 
solution (assuming no interaction with RRWF) of 2.59. The agreement is excellent. 
The numerical solution indicates that a very weak interaction took place, which can 
be seen from the velocity profile, Fig. 6b. The interaction caused the maximum 
velocity to decrease from 1.280 to 1.240. 

Included in Table I is a comparison of the exact solution for p, u, and p and that 
obtained using the present numerical scheme at locations in the x - t plane as 
indicated by the circled numbers in Fig. 3b. The agreement is excellent and 
demonstrates the ability of the scheme to accurately capture weak and strong waves 
and discontinuities even after their interaction with the boundary surface and with 
each other. The results were not affected by the change in cell specification as 
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FIG. 4. Solution of the unsteady flow in a closed shock tube (Case B) at f  = 0.95: (a) pressure 
distribution; (b) density distribution; (c) velocity distribution. 

shown in Fig. 3a. The results also demonstrate the efficacy of the solid boundary 
treatment as well as the flux calculation at interfaces shared by more than two cells. 

C. Two-Dimensional, Steady Shock Reflection (Case C) 

Considered here is the problem of an oblique shock, generated by a supersonic 
flow over a sharp wedge, and the subsequent reflections from a flat plate located 
underneath the wedge and the wedge surface itself (see Fig. 7). The purpose of this 
exercise is to verify the accuracy of the present scheme using nonrectangular cells 
and the described method of handling solid surface boundary conditions. 

A similar, but simpler, problem has been widely used as the test case for numeri- 
cal schemes dealing with shocks [4-61. In these computations [4-61, the initial 
oblique shock was generated by specifying a constant state corresponding to the 
desired shock strength and angle at some distance above the wall. Consequently, a 
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FIG. 5. Solution of the unsteady flow in a closed shock tube (Case B) at t = 2.25: (a) pressure 
distribution; (b) density distribution: (c) velocity distribution. 

rectangular grid system was used in these simulations and the second reflection was 
omitted. 

The cell distribution for the present calculation is shown in Fig. 7d, where it 
should be noted that-for other than the first four columns-the upper and lower 
surfaces of cells are not perpendicular to the y-axis and the cell inclinations are not 
equal. 

The upstream condition is specified by prescribing the values of the variables at 
the cell center of each cell in the first column as indicated in Fig. 7. A zero-order 
extrapolation is used as the downstream condition, which results in the variables at 
the cell center of each cell in the last (N) column being set to the adjacent cell 
(N - 1) values. 

Calculations are performed with E = 0.25 and a CFL condition of 0.9. Figs. 7b 
and c show the numerically determined pressure contours using, respectively, the 
present scheme and the first-order Godunov method [13] for the flux calculations. 
Notice that both methods predicted the correct pressure jump and shock angles; 
however, the shock captured by the Godunov scheme is excessively smeared. Care- 
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FIG. 6. Solution of the unsteady flow in a closed shock tube (Case B) at t = 2.75: (a) pressure 

distribution; (b) density distribution; (c) velocity distribution. 

ful examination of the computational results obtained using the present scheme 
shows that the shocks are resolved in, at most, three cells. 

D. Blast Flowfield Generated by an Open-Ended Shock Tube (Case D) 

Consider the problem of a shock being expelled, at t = 0, from the open end of 
an axisymmetric shock tube (see Fig. 8a). Since the flow behind the shock is sub- 
sonic, a 2-dimensional rarefaction wave propagates into the tube. A blast wave, 
followed by an imbedded Mach disc, propagates downstream into the open space. 

Numerical calculations have been performed using both uniform and very non- 
uniform cell distributions as shown in Figs. 8b and c. Schmidt and Duffy [ 143 
carried out carefully designed experiments measuring the pressure time history at 
many locations upstream and downstream of the tube exit. High resolution spark 
shadowgraphs were also made. Detailed comparisons with these extensive data is 
the subject of another paper [lS]; however, some sample results are included 
herein to demonstrate the results obtained. Figure 9 illustrates the pressure time 
history at a location on the centerline at x = 1.5 D to show the convergence of the 
scheme as the cell distribution is varied. In this figure, the measured pressure data 



b 
3.0 

2.7 - 

24- 

2.1 - 

- EXACT SOLUTION 

. SECOND ORDER SOLUTION (present) 

. FIRST ORDER SOLUTION (Godunov) 

1.8 - 

b- 
t 
Y 15- 
0" 

0 I I I 
-4 20 -3.64 -3.08 -2.52 -1.96 -1.40 -0.84 -0 28 0.26 0.84 1.40 1.96 2.52 3.08 3.64 4 20 

X 

C 
1.4 1.4 

1 I I 

12- - EXACT SOLUTION 
*- 

.* 

v- l 

.  SECOND ORDER SOLUTION (present) .**,*I 

1.0 - 
.-“I . 

* FIRST ORDER SOLUTION (Godunov) 

m* 

,*I:aL 
x 

0.8 - 

.:f 
0.6 - 

1. 
"4' I 

.a.- 

0.4 - 
*n:.* 

*' . 
.a ,* 

"Nrn ** 

02- .a 
.f.. 

.' 
A 

-0.6 -0.6~ I I I I I I I I 
-4 -4 20 -3.64 -3.08 -2.52 -1.96 -1.40 -0.84 -0.28 0.28 0.84 1.40 20 -3.64 -3.08 -2.52 -1.96 -1.40 -0.84 -0.28 0.28 0.84 1.40 1.96 1.96 2.52 3.08 3 64 4.20 2.52 3.08 3 64 4.20 

X X 

FIG. 6-Continued FIG. 6-Continued 

163 163 



164 WANG AND WIDHOPF 

TABLE I 

Comparison of Exact and Numerical Solutions for the Unsteady Flow 
in a Closed Shock Tube (Case B) 

Location Variable 
Numerical Exact 
solution solution 

2 P 

P 
u 

3 P 

P 
u 

5 P 

P 
u 

6 P 

P 
u 

7 P 

P 
ll 

2.014 2.010 
0.298 0.298 
1.281 1.280 

2.014 2.010 
1.163 1.162 
1.281 1.280 

5.758 5.733 
2.384 2.378 
0.0 0.0 

4.165 
1.892 

-0.415 - 

4.160 
1.891 
0.411 

4.165 4.160 
0.494 0.496 

-0.415 0.411 

are not reliable after t = 1.2 ms due to the interference of the instrument with the 
Mach disk moving downstream [16]. Figures 10a and b are, respectively, a 
pressure contour plot and a density contour plot from the numerical solution at 
t = 1.5 ms. Shown in Fig. 1Oc for comparison is a shadowgraph picture from 
experiments carried out without the pressure instrumentation in place taken at the 
corresponding time [16]. By overlaying these figures, using the Mach disk as a 
reference, it is seen that the main features of the complicated blast flowfield are all 
accurately reproduced in the numerical calculation (see Ref. [ 151 for quantitative 
details). These features include the Mach disk, jet shock, recompression shock, 
triple point, slip surface downstream of the triple point, vortex above the Mach 
disk, and the imbedded shock upstream of the vortex. 

However, it was initially found that the rarefaction wave propagating upstream 
into the tube was severely suppressed when the artificial compression parameter 0, 
was computed using Eq. (13e). A sensitivity study resulted in the development of 
the following representation for the compression parameter 

e, = 0.250~ +.0.758;.5, (21) 

where t7, is defined by Eq. (13e). Use of this nonlinear form gave very good results 
for all waves and discontinuities, and it is used in the present scheme for all 
subsequent calculations. 
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FIG. 7. Two-dimensional, steady shock reflection problem (Case C). 

Solution of this very difficult time-dependent flow and the excellent comparisons 
[15] with experimental data verify the efficacy of the present technique, especially 
when a very highly variable cell distribution is used. 

IV. CONCLUSIONS 

A finite-volume TVD numerical algorithm, using nonuniformly distributed, 
skewed quadrilateral cells, has been developed for the solution of the Euler equa- 
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FIG. 8. Coordinates, initial conditions, and cell distributions for an axisymmetric blast flowfield 
problem (Case D): (a) coordinates and initial conditions; (b) uniform cell distribution (A); (c) highly 

nonuniform cell distribution (B). 

tions. The TVD property is retained for nonuniform grid systems, and the method 
is second-order accurate. Four numerical examples have demonstrated the ability of 
the scheme to accurately resolve complicated wave patterns and interactions using 
highly nonuniform zonal cell distributions. The extension of the technique to three 
dimensions is straightforward and is presented in Ref. [ 11. This extension uses the 
geometric flexibility already developed in Ref. [7] to treat any arbitrary zonal 
distribution of skewed quadrilateral cells and correctly handle the interaction of cell 
interfaces which bound multiple cells [18, 191. This allows for the solution of very 
complicated geometries including moving bodies [IS] and is very useful in the 
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FIG. 8-Continued 

application of multiblock cell specification, since cell nodal connectivity is nol 
required in the present technique. This allows for local grid refinement without 
causing corresponding adverse effects (refinements) in other areas of the computa- 
tional domain where they are not needed or desired. 

0.00 0.25 0.50 0.75 1 .oo 1.25 1.50 
TIME, ms 

FIG. 9. Comparison of calculated and measured overpressure time history (Case D) at X/D = 1.5 ms. 
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FIG. 10. Numerical simulation and experimental results for an axisymmetric blast flowtield (Case D) 
(using nonuniform cell distribution B): (a) pressure contour plot of numerical simulation at 1.5 ms; 
(b) density contour plot of numerical simulation at 1.5 ms; (c) shadowgraph [16] at 1.5 ms. 

APPENDIX A: TVD PROPERTY FOR A NONUNIFORM GRID SYSTEM 

Consider a l-dimensional scalar hyperbolic equation in conservation form 

(A.1) 

where F(U) is a function of U and a(U) = aF/aU is the characteristic speed. The 
numerical approximation to the solution of Eq. (A.l), by Eq. (5), can be written as 

u;+‘= uy - A#;+ ,,* -F;_ &. (A.21 
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The numerical fluxes, Eq. (6a), can be written as 

liFi+ l/2 = F(u,)+~CF(ui+,)-F(ui)l 

-i CfI’~+~)-~(~~)I ~:it1~~~i+~Qi+1,2di+,,~u 
r+l I 

Axi 

(Ax,+ I + Axi)/ +Qi+,p Ai+1/2U (A.3) 1 
and, similarly, Eq. (6b) can be written as 

U-I/2 

Axi 
bi~1/2(Axi+Axi~t),2+Qi-1/~ Ai-,/2U, (A.4) 

1 

where 

and 

ai+l/z= 
Cf(ui+1)-f(U,)llAi+,/2U when Ai+1,2U#0 

4ui) when Ai+L,2U=0. (A.51 

Here 

Ai+ 112 u=ui+,-u,. 

1’ Eq* (A.3 ), Qi+ 112 represents the combination of the numerical viscosity and the 
artificial compression. However, the specific form of Qi+,,, is not required in the 
present analysis. 

Using Eqs. (A.3) and (A.4), one can write Eq. (A.2) as 

where 

,;+I = U:+C,,i+1/2Ai+1/2Un-C~,i-,1/2Ar-,1/2Un, b4.6) 

1 -+ Ax,+ I- 4 
. Axi+ I + Axi (A.7) 

Notice that Eq. (A.6) reduces to Eq. (3.5b) of Ref. [3] in a uniform grid system. 
Following Ref. [3], note that the proposed scheme-Eq. (A.2) with the numerical 
fluxes given by Eqs. (A.3) and (A.4tis TVD if 

C+,i+l/2=; Q~+I,z-“~+L/z 
[ 

l- 
Axj+ 1 - Axi 
AX~+ 1 + AXi 

20 
C..,i+I/2=: Qi+t,z+‘i+,/z 

Ax. 
1 +Ax’+’ 

- Axi rti +Ax, 20 
(A.81 

(~4.9) 
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and 

c-,i+1/2+ c+,i- 

AXi, I- dXi 

dXi, I+ dXi 1 e 1. (A.lO) 

In the uniform grid system, conditions (A.8) through (A.lO) can be satisfied 
sufficiently by taking 

Qi+l/2 = Q(ci+ d lx1 d Q(x) < 1 (A.ll) 

under the CFL-like condition Vi+ 1,2 <p < 1. Here, p is a constant. 
Note that in the nonuniform grid system conditions, Eqs. (A.8) through (A.lO) 

are satislied if 

Qi+1/2=Q(x), I-4 G Q(x) G P> (A.12) 

where 

(A.13) 

and 

P= l/II1 + lAxi+ - dXil/(dXj+ 1 + A-Xi)]. (A.14) 

In comparison with the analysis of Ref. [3], the effect of grid nonuniformity on 
the TVD property is of the order (dxi+i - dxi)/(~xi+ 1 + Axi). As shown in 
Appendix B, this is the same order of magnitude as the truncation error when the 
F(U) term is differenced. Therefore, the Qi+ ,,2 term is constructed using the 
formula given in Ref. [3] for the uniform grid system (provided V,, ,,2 is evaluated 
using the local grid size Axi). A formal truncation error analysis of this method 
of constructing Q i + i,* term has not been carried out. However, Case A of the 
numerical experiments was performed to evaluate this approach. This example 
demonstrated that the proposed method will not produce noticeable effects if the 
ratio of the sizes of two adjacent cells is less than 1.67. One can used this ratio as 
a qualitative guide. 

APPENDIX B: ON THE TRUNCATION ERROR 

As shown in Appendix A, the nonuniform grid system modification required to 
preserve the TVD property is of order (Axi+ i - dxi)/(dxi+ I + Axi). By substitution 
of Eqs. (A.3) and (A.4) into Eq. (A.2) and use of a Taylor series expansion, the 

581/84/l-12 



172 WANG AND WIDHOPF 

truncation error of the main flux term (excluding the numerical viscosity, Q =0) 
can be evaluated. This yields 

g+g+TER=O, 

where TER denotes the truncation error. The “leading” term of TER is 

TER=; $ (f,+,-Zi)+O(Z?+,,l?), (3 

(B.1) 

03.2) 

where I,, i = 1/2(.4xj+ i + Axi) and li = 1/2(dxi + Axi_ i) are the distances between 
cell i and adjacent cells. 

For an algebraic grid distribution [lo], 

rj=li+r/li= 1 +O(zp)P>o 

I=max I;< 1. 
(B.3) 

By Eq. (B.3), the larger the p, the smoother is the grid distribution. It is concluded 
that 

TER - O(lilP) + O(lf+ ,ZJ. (B.4) 

Thus, for p > 1, the present finite volume scheme for nonuniform cell distributions 
is second order. 

It is worth noting that since the cell center value is used for the volume integral, 
interpreting the integration procedure as an application of the trapezoidal rule, the 
truncation error associated with this integration is of the order (If). 
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